Neural Network Embedding of the Over-Dispersed Poisson Reserving Model

Andrea Gabrielli
RiskLab
ETH Zürich

Schweizerische Aktuarvereinigung SAV 110. Mitgliederversammlung

Luzern
30. August 2019

Idea

- CANN (Combined Actuarial Neural Network) approach
- Embedding of cross-classified over-dispersed Poisson (ccODP) reserving model into neural network architecture
- Starting point of neural network calibration: ccODP model
\Longrightarrow Learning model structure beyond ccODP model (boosting)

Example Data

- Simulated from Individual Claims History Simulation Machine
- $1 \leq i \leq I$: accident years, $0 \leq j \leq J$: development delays
- Aggregated (incremental) payments $Y_{i, j}$ for all claims in LoB 1:

Accident year i	Development delay j											
	0	1	2	3	4	5	6	7	8	9	10	11
1	9'416	4'850	1'596	871	594	446	322	242	188	177	159	130
2	9'822	5'293	1'826	1'026	657	457	364	292	228	191	146	
3	9'613	4'903	1'665	970	594	443	325	263	212	176		
4	9'788	5'250	1'823	1'086	744	550	431	303	226			
5	9'955	5'722	2'089	1'159	791	558	458	354				
6	10'453	6'122	2'214	1'311	859	630	497					
7	11'130	6'476	2'401	1'356	890	677						
8	11'268	6'629	2'504	1'493	1'008							
9	11'475	6'953	2'648	1'478								
10	12'172	7'084	2'746									
11	12'816	8'028										
12	13'239											

Cross-Classified Over-Dispersed Poisson (ccODP) Model

- ODP model: $Y_{i, j} / \phi \stackrel{\text { ind. }}{\sim} \operatorname{Poi}\left(\mu_{i, j} / \phi\right), \quad \phi>0$
- Cross-classification: $\log \mu_{i, j}=\alpha_{i}+\beta_{j}$
$\Longrightarrow \mathbb{E}\left[Y_{i, j}\right]=\operatorname{Var}\left(Y_{i, j}\right) / \phi=\mu_{i, j}=\exp \left\{\alpha_{i}+\beta_{j}\right\}$

Cross-Classified Over-Dispersed Poisson (ccODP) Model

- ODP model: $Y_{i, j} / \phi \stackrel{\text { ind. }}{\sim} \operatorname{Poi}\left(\mu_{i, j} / \phi\right), \quad \phi>0$
- Cross-classification: $\log \mu_{i, j}=\alpha_{i}+\beta_{j}$
$\Longrightarrow \mathbb{E}\left[Y_{i, j}\right]=\operatorname{Var}\left(Y_{i, j}\right) / \phi=\mu_{i, j}=\exp \left\{\alpha_{i}+\beta_{j}\right\}$
- Minimize Poisson deviance statistics $\Longrightarrow \operatorname{MLEs}\left(\widehat{\alpha}_{i}\right)_{i},\left(\widehat{\beta}_{j}\right)_{j}$
- Estimates: $\widehat{Y}_{i, j}^{\mathrm{ODP}}=\widehat{\mu}_{i, j}^{\mathrm{ODP}}=\exp \left\{\widehat{\alpha}_{i}+\widehat{\beta}_{j}\right\}$
- ODP reserves $=\sum_{i+j>1} \widehat{\mu}_{i, j}^{\mathrm{ODP}}=$ Chain-ladder (CL) reserves

Results

- 6 LoBs from Individual Claims History Simulation Machine
- Results:

		LoB 1	LoB 2	LoB 3	LoB 4	LoB 5	LoB 6	total
(i)	true claims reserves	$39^{\prime} 689$	$37^{\prime} 037$	$16^{\prime} 878$	$71^{\prime} 630$	$72^{\prime} 548$	$31^{\prime} 117$	$268^{\prime} 899$
(ii)	CL/ccODP reserves	$38^{\prime} 569$	$35^{\prime} 460$	$15^{\prime} 692$	$67^{\prime} 574$	$70^{\prime} 166$	$29^{\prime} 409$	$256^{\prime} 870$
(iii)								
(iv)								
(v)	bias CL/ccODP	-2.8%	-4.3%	-7.0%	-5.7%	-3.3%	-5.5%	-4.5%
(vi)								
(vii)								

Results

- 6 LoBs from Individual Claims History Simulation Machine
- Results:

		LoB 1	LoB 2	LoB 3	LoB 4	LoB 5	LoB 6	total
(i)	true claims reserves	$39^{\prime} 689$	$37^{\prime} 037$	$16^{\prime} 878$	$71^{\prime} 630$	$72^{\prime} 548$	$31^{\prime} 117$	$268^{\prime} 899$
(ii)	CL/ccODP reserves	$38^{\prime} 569$	$35^{\prime} 460$	$15^{\prime} 692$	$67^{\prime} 574$	$70^{\prime} 166$	$29^{\prime} 409$	$256^{\prime} 870$
(iii)								
(iv)								
(v)	bias CL/ccODP	-2.8%	-4.3%	-7.0%	-5.7%	-3.3%	-5.5%	-4.5%
(vi)								
(vii)								

- Question: Can we do better?
\Longrightarrow Embed ccODP model into neural network architecture

ccODP Model as Neural Network

- Input layer: $(i, j) \in\{1, \ldots, I\} \times\{0, \ldots, J\}$
- Embedding layers:

$$
\begin{array}{ll}
\alpha(\cdot):\{1, \ldots, l\} \rightarrow \mathbb{R}, & \\
i \mapsto \alpha(i)=\widehat{\alpha}_{i}, \\
\beta(\cdot):\{0, \ldots, J\} \rightarrow \mathbb{R}, & \\
j \mapsto \beta(j)=\widehat{\beta}_{j} .
\end{array}
$$

- ccODP: $\widehat{\mu}_{i, j}^{\text {ODP }}=\exp \left\{\widehat{\alpha}_{i}+\widehat{\beta}_{j}\right\}$

Neural Network Embedding (1/3)

- Neural network: (non-linear) parametric regression function
- Input layer: $(i, j) \in\{1, \ldots, I\} \times\{0, \ldots, J\}$
- Embedding layers: $(i, j) \mapsto\left(\widehat{\alpha}_{i}, \widehat{\beta}_{j}\right)$

Neural Network Embedding (2/3)

- Three hidden layers with $\left(q_{1}, q_{2}, q_{3}\right)=(20,15,10)$
- First hidden layer: $z^{(1)}=\left(z_{1}^{(1)}, \ldots, z_{q_{1}}^{(1)}\right) \in \mathbb{R}^{q_{1}}$, where

$$
z_{l}^{(1)}=\tanh \left(b_{l}^{(1)}+w_{l, 1}^{(1)} \widehat{\alpha}_{i}+w_{l, 2}^{(1)} \widehat{\beta}_{j}\right) \in(-1,1)
$$

Neural Network Embedding (3/3)

- Second hidden layer: $\boldsymbol{z}^{(2)}=\left(z_{1}^{(2)}, \ldots, z_{q_{2}}^{(2)}\right) \in \mathbb{R}^{q_{2}}$, where

$$
z_{l}^{(2)}=\tanh \left(b_{l}^{(2)}+\left\langle\boldsymbol{w}_{l}^{(2)}, z^{(1)}\right\rangle\right)
$$

- Third hidden layer: $\boldsymbol{z}^{(3)} \in \mathbb{R}^{q_{3}}$

Blended Cross-Classified Neural Network (bCCNN)

- Output: $\mu_{i, j}^{\mathrm{bCCNN}}=\exp \left\{\quad b+\left\langle\boldsymbol{w}, \boldsymbol{z}^{(3)}(i, j)\right\rangle\right\}$

Blended Cross-Classified Neural Network (bCCNN)

- Output: $\mu_{i, j}^{\mathrm{bCCNN}}=\exp \left\{\widehat{\alpha}_{i}+\widehat{\beta}_{j}+b+\left\langle\boldsymbol{w}, \boldsymbol{z}^{(3)}(i, j)\right\rangle\right\}$

Blended Cross-Classified Neural Network (bCCNN)

- Output: $\mu_{i, j}^{\mathrm{bCCNN}}=\exp \left\{\widehat{\alpha}_{i}+\widehat{\beta}_{j}+b+\left\langle\boldsymbol{w}, \boldsymbol{z}^{(3)}(i, j)\right\rangle\right\}$
- Initialization: $b=0, \boldsymbol{w}=\mathbf{0} \Longrightarrow \mu_{i, j}^{\mathrm{bCCNN}}=\exp \left\{\widehat{\alpha}_{i}+\widehat{\beta}_{j}\right\}=\widehat{\mu}_{i, j}^{\mathrm{ODP}}$
\Longrightarrow Starting point of neural network calibration: ccODP model

Neural Network Calibration

- Neural network parameter: $\boldsymbol{\theta} \in \mathbb{R}^{q}$ with $q=547$
- Minimize Poisson deviance statistics $\mathcal{L}(\boldsymbol{\theta})$ with gradient descent:

$$
\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\rho \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}), \quad \rho>0
$$

Neural Network Calibration

- Neural network parameter: $\boldsymbol{\theta} \in \mathbb{R}^{q}$ with $q=547$
- Minimize Poisson deviance statistics $\mathcal{L}(\boldsymbol{\theta})$ with gradient descent:

$$
\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\rho \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}), \quad \rho>0
$$

- Problem: For how long should we run gradient descent?
- Idea: Split claims
\Longrightarrow training triangle and validation triangle

Neural Network Calibration

- Neural network parameter: $\boldsymbol{\theta} \in \mathbb{R}^{q}$ with $q=547$
- Minimize Poisson deviance statistics $\mathcal{L}(\boldsymbol{\theta})$ with gradient descent:

$$
\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\rho \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}), \quad \rho>0
$$

- Problem: For how long should we run gradient descent?
- Idea: Split claims
\Longrightarrow training triangle and validation triangle

Results

- 6 LoBs from Individual Claims History Simulation Machine
- Results:

		LoB 1	LoB 2	LoB 3	LoB 4	LoB 5	LoB 6	total
(i)	true claims reserves	$39^{\prime} 689$	$37^{\prime} 037$	$16^{\prime} 878$	$71^{\prime} 630$	$72^{\prime} 548$	$31^{\prime} 117$	$268^{\prime} 899$
(ii)	CL/ccODP reserves	$38^{\prime} 569$	$35^{\prime} 460$	$15^{\prime} 692$	$67^{\prime} 574$	$70^{\prime} 166$	$29^{\prime} 409$	$256^{\prime} 870$
(iii)	bCCNN reserves							
(iv)								
(v)	bias CL/ccODP	-2.8%	-4.3%	-7.0%	-5.7%	-3.3%	-5.5%	-4.5%
(vi)	bias bCCNN							
(vii)								

Results

- 6 LoBs from Individual Claims History Simulation Machine
- Results:

		LoB 1	LoB 2	LoB 3	LoB 4	LoB 5	LoB 6	total
(i)	true claims reserves	$39^{\prime} 689$	$37^{\prime} 037$	$16^{\prime} 878$	$71^{\prime} 630$	$72^{\prime} 548$	$31^{\prime} 117$	$268^{\prime} 899$
(ii)	CL/ccODP reserves	$38^{\prime} 569$	$35^{\prime} 460$	$15^{\prime} 692$	$67^{\prime} 574$	$70^{\prime} 166$	$29^{\prime} 409$	$256^{\prime} 870$
(iii)	bCCNN reserves	$39^{\prime} 233$	$35^{\prime} 899$	$15^{\prime} 815$	$70^{\prime} 219$	$70^{\prime} 936$	$30^{\prime} 671$	$262^{\prime} 773$
(iv)								
(v)	bias CL/ccODP	-2.8%	-4.3%	-7.0%	-5.7%	-3.3%	-5.5%	-4.5%
(vi)	bias bCCNN	-1.1%	-3.1%	-6.3%	-2.0%	-2.2%	-1.4%	-2.3%
(vii)								

Multiple LoB Model

- Input layer: $(i, j, m) \in\{1, \ldots, I\} \times\{0, \ldots, J\} \times\{1, \ldots, 6\}$
- Embedding layers:

$$
\begin{aligned}
\alpha(\cdot):\{1, \ldots, l\} \rightarrow \mathbb{R}^{6}, & i \mapsto \alpha(i)=\left(\widehat{\alpha}_{i \mid 1}, \ldots, \widehat{\alpha}_{i \mid 6}\right), \\
\beta(\cdot):\{0, \ldots, J\} \rightarrow \mathbb{R}^{6}, & j \mapsto \beta(j)=\left(\widehat{\beta}_{i \mid 1}, \ldots, \widehat{\beta}_{i \mid 6}\right), \\
\gamma(\cdot):\{1, \ldots, \sigma\} \rightarrow \mathbb{R}, & m \mapsto \gamma(m)=\gamma_{m} .
\end{aligned}
$$

- Output: $\mu_{i, j, m}^{\mathrm{LoB}}=\exp \left\{\widehat{\alpha}_{i \mid m}+\widehat{\beta}_{j \mid m}+b+\left\langle\boldsymbol{w}, \boldsymbol{z}^{(3)}(i, j, m)\right\rangle\right\}$

Results

- 6 LoBs from Individual Claims History Simulation Machine
- Results:

		LoB 1	LoB 2	LoB 3	LoB 4	LoB 5	LoB 6	total
(i)	true claims reserves	$39^{\prime} 689$	$37^{\prime} 037$	$16^{\prime} 878$	$71^{\prime} 630$	$72^{\prime} 548$	$31^{\prime} 117$	$268^{\prime} 899$
(ii)	CL/ccODP reserves	$38^{\prime} 569$	$35^{\prime} 460$	$15^{\prime} 692$	$67^{\prime} 574$	$70^{\prime} 166$	$29^{\prime} 409$	$256^{\prime} 870$
(iii)	bCCNN reserves	$39^{\prime} 233$	$35^{\prime} 899$	$15^{\prime} 815$	$70^{\prime} 219$	$70^{\prime} 936$	$30^{\prime} 671$	$262^{\prime} 773$
(iv)	multiple LoB reserves	$40^{\prime} 271$	$37^{\prime} 027$	$16^{\prime} 400$	$70^{\prime} 563$	$73^{\prime} 314$	$30^{\prime} 730$	$2688^{\prime} 305$
(v)	bias CL/ccODP	-2.8%	-4.3%	-7.0%	-5.7%	-3.3%	-5.5%	-4.5%
(vi)	bias bCCNN	-1.1%	-3.1%	-6.3%	-2.0%	-2.2%	-1.4%	-2.3%
(vii)	bias multiple LoB	1.5%	0.0%	-2.8%	-1.5%	1.1%	-1.2%	-0.2%

Prediction Uncertainty (with Bootstrap)

- Conditional root mean square error of prediction (rmsep):

$$
\begin{aligned}
\operatorname{rmsep}\left(R^{\text {true }}, R^{\mathrm{ODP}} \mid \mathcal{D}_{l}\right) & =\sqrt{\mathbb{E}\left[\left(R^{\text {true }}-R^{\mathrm{ODP}}\right)^{2} \mid \mathcal{D}_{l}\right]} \\
& =\sqrt{\operatorname{Var}\left(R^{\text {true }} \mid \mathcal{D}_{l}\right)+\left(R^{\mathrm{ODP}}-\mathbb{E}\left[R^{\text {true }} \mid \mathcal{D}_{l}\right]\right)^{2}}
\end{aligned}
$$

Prediction Uncertainty (with Bootstrap)

- Conditional root mean square error of prediction (rmsep):

$$
\begin{aligned}
\operatorname{rmsep}\left(R^{\text {true }}, R^{\mathrm{ODP}} \mid \mathcal{D}_{l}\right) & =\sqrt{\mathbb{E}\left[\left(R^{\text {true }}-R^{\mathrm{ODP}}\right)^{2} \mid \mathcal{D}_{l}\right]} \\
& =\sqrt{\operatorname{Var}\left(R^{\text {true }} \mid \mathcal{D}_{l}\right)+\left(R^{\mathrm{ODP}}-\mathbb{E}\left[R^{\text {true }} \mid \mathcal{D}_{l}\right]\right)^{2}}
\end{aligned}
$$

- Results:

		LoB 1	LoB 2	LoB 3	LoB 4	LoB 5	LoB 6	total
(i)	rmsep CL/ccODP	$1^{\prime} 076$	$1^{\prime} 316$	475	$2^{\prime} 150$	$1^{\prime} 938$	975	$3^{\prime} 528$
(ii)	bias CL/ccODP	$-1^{\prime} 120$	$-1^{\prime} 577$	$-1^{\prime} 186$	$-4^{\prime} 056$	$-2^{\prime} 382$	$-1^{\prime} 708$	$-12^{\prime} 029$
(iii)								
(iv)								
(v)								
(vi)								

Prediction Uncertainty (with Bootstrap)

- Conditional root mean square error of prediction (rmsep):

$$
\begin{aligned}
\operatorname{rmsep}\left(R^{\text {true }}, R^{\mathrm{ODP}} \mid \mathcal{D}_{l}\right) & =\sqrt{\mathbb{E}\left[\left(R^{\text {true }}-R^{\mathrm{ODP}}\right)^{2} \mid \mathcal{D}_{l}\right]} \\
& =\sqrt{\operatorname{Var}\left(R^{\text {true }} \mid \mathcal{D}_{l}\right)+\left(R^{\mathrm{ODP}}-\mathbb{E}\left[R^{\text {true }} \mid \mathcal{D}_{l}\right]\right)^{2}}
\end{aligned}
$$

- Results:

		LoB 1	LoB 2	LoB 3	LoB 4	LoB 5	LoB 6	total
(i)	rmsep CL/ccODP	$1^{\prime} 076$	$1^{\prime} 316$	475	$2^{\prime} 150$	$1^{\prime} 938$	975	$3^{\prime} 528$
(ii)	bias CL/ccODP	$-1^{\prime} 120$	$-1^{\prime} 577$	$-1^{\prime} 186$	$-4^{\prime} 056$	$-2^{\prime} 382$	$-1^{\prime} 708$	$-12^{\prime} 029$
(iii)	rmsep bCCNN	$1^{\prime} 171$	$1^{\prime} 299$	508	$2^{\prime} 105$	$2^{\prime} 029$	$1^{\prime} 072$	$3^{\prime} 607$
(iv)	bias bCCNN	-456	$-1^{\prime} 138$	$-1^{\prime} 063$	$-1^{\prime} 411$	$-1^{\prime} 612$	-446	$-6^{\prime} 126$
(v)								
(vi)								

Prediction Uncertainty (with Bootstrap)

- Conditional root mean square error of prediction (rmsep):

$$
\begin{aligned}
\operatorname{rmsep}\left(R^{\text {true }}, R^{\mathrm{ODP}} \mid \mathcal{D}_{l}\right) & =\sqrt{\mathbb{E}\left[\left(R^{\text {true }}-R^{\mathrm{ODP}}\right)^{2} \mid \mathcal{D}_{l}\right]} \\
& =\sqrt{\operatorname{Var}\left(R^{\text {true }} \mid \mathcal{D}_{l}\right)+\left(R^{\text {ODP }}-\mathbb{E}\left[R^{\text {true }} \mid \mathcal{D}_{l}\right]\right)^{2}}
\end{aligned}
$$

- Results:

		LoB 1	LoB 2	LoB 3	LoB 4	LoB 5	LoB 6	total
(i)	rmsep CL/ccODP	$1^{\prime} 076$	$1^{\prime} 316$	475	$2^{\prime} 150$	$1^{\prime} 938$	975	$3^{\prime} 528$
(ii)	bias CL/ccODP	$-1^{\prime} 120$	$-1^{\prime} 577$	$-1^{\prime} 186$	$-4^{\prime} 056$	$-2^{\prime} 382$	$-1^{\prime} 708$	$-12^{\prime} 029$
(iii)	rmsep bCCNN	$1^{\prime} 171$	$1^{\prime} 299$	508	$2^{\prime} 105$	$2^{\prime} 029$	$1^{\prime} 072$	$3^{\prime} 607$
(iv)	bias bCCNN	-456	$-1^{\prime} 138$	$-1^{\prime} 063$	$-1^{\prime} 411$	$-1^{\prime} 612$	-446	$-6^{\prime} 126$
(v)	rmsep multiple LoB	$1^{\prime} 102$	$1^{\prime} 357$	498	$2^{\prime} 098$	$1^{\prime} 989$	$1^{\prime} 033$	$3^{\prime} 757$
(vi)	bias multiple LoB	582	-10	-478	$-1^{\prime} 067$	766	-387	-594

Relative Model Differences

- For each cell (i, j) :

$$
\frac{\widehat{\mu}_{i, j,}^{\mathrm{LOB}}-\widehat{\mu}_{i, j}^{\mathrm{ODP}}}{\widehat{\mu}_{i, j}^{\mathrm{ODP}}}
$$

Relative Model Differences

- For each cell (i, j) :

\Longrightarrow slower payout pattern in more recent accident years

Cumulative Development Factors

- ccODP model:

$$
\begin{aligned}
f_{j}^{\mathrm{ODP}} & =\frac{\sum_{l=0}^{j} \widehat{\mu}_{i, l}^{\mathrm{ODP}}}{\widehat{\mu}_{i, 0}^{\mathrm{ODP}}} \\
& =\frac{\sum_{l=0}^{j} \exp \left\{\widehat{\beta}_{l}\right\}}{\exp \left\{\widehat{\beta}_{0}\right\}}
\end{aligned}
$$

- Multiple LoB model:

$$
f_{i, j}^{\mathrm{LoB}}=\frac{\sum_{l=0}^{j} \widehat{\mu}_{i, l, \cdot}^{\mathrm{LoB}}}{\widehat{\mu}_{i, 0, \cdot}^{\mathrm{LoB}}}
$$

Cumulative Development Factors

- ccODP model:

$$
\begin{aligned}
f_{j}^{\mathrm{ODP}} & =\frac{\sum_{l=0}^{j} \widehat{\mu}_{i, l}^{\mathrm{ODP}}}{\widehat{\mu}_{i, 0}^{\mathrm{ODP}}} \\
& =\frac{\sum_{l=0}^{j} \exp \left\{\widehat{\beta}_{l}\right\}}{\exp \left\{\widehat{\beta}_{0}\right\}}
\end{aligned}
$$

- Multiple LoB model:

$$
f_{i, j}^{\mathrm{LoB}}=\frac{\sum_{l=0}^{j} \widehat{\mu}_{i, l, \cdot}^{\mathrm{LoB}}}{\widehat{\mu}_{i, 0, \cdot}^{\mathrm{LoB}}}
$$

\Longrightarrow accident year dependent cumulative development factors

Bias (100 Datasets)

- Simulate 100 datasets from Individual Claims History Simulation Machine
- 100 biases for:
- ccODP/CL model
- bCCNN model
- multiple LoB model

Bias (100 Datasets)

- Simulate 100 datasets from Individual Claims History Simulation Machine
- 100 biases for:
- ccODP/CL model
- bCCNN model
- multiple LoB model
reserves over different seeds of LoB 1

\Longrightarrow learning additional model structure

Conclusions

- Learning additional model structure through embedding
- Number of training iterations has to be chosen carefully
- Small number of iterations allows us to apply bootstrap
- Extension: embedding of numbers of claims and payments

References

(1) Gabrielli, A. (2019). A neural network boosted double over-dispersed Poisson claims reserving model. SSRN Manuscript, ID 3365517.
(2) Gabrielli, A., Richman, R., Wüthrich, M.V. (2018). Neural network embedding of the over-dispersed Poisson reserving model. SSRN Manuscript, ID 3288454 (to be published in the Scandinavian Actuarial Journal).
(3) Gabrielli, A., Wüthrich, M.V. (2018). An individual claims history simulation machine. Risks 6/2, 29.
(4) Wüthrich, M.V., Merz, M. (2019). Editorial: Yes, we CANN! ASTIN Bulletin 49/1, 1-3.

